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Abstract. The Hamiltonian of a hydrogen atom associated with(&) monopole is established

in parallel to a usual hydrogen atom with conserved angular momehtamd Pauli-Runge—

Lenz vectorR. Both are associated with monopoles and form an algsiared) for the bound
motions. Due to the two corresponding Pauli relations and their bosonic realizations, the system
can be connected to a four-dimensional harmonic oscillator with a monopole-dependent constraint.
Furthermore, the monopole harmonics can be obtained by the operator method.

1. Introduction

The subject of magnetic monopoles began with Dirac’s paper on quantized singularities in the
electromagnetic field [1]. The motivation for that paper was to find the reason for the existence
of the smallest electric charge. After 1931, and before 1948 when Dirac wrote on the subject
again, the theory of monopoles and of bound states of monopoles and electric charges was
worked on extensively by Tamm, Fierz, and others [2, 3]. Nearly 30 years ago, McIntosh and
Cisneros [4], and Zwanziger [5] suggested considering a spinless system (the MIC—Zwanziger
system) in a combined monopole plus scalar potential field, described by the Hamiltonian

=2 2 12
H0=”—+q—<1—-). 1)

r

Since then the Hamiltonian systems in quantum mechanics associated with monopoles have
aroused a great deal of interest [6-9]. For example, D’Hoker and Vinet constructed a
Hamiltonian (the D’Hoker—Vinet system)
Hy = Ho—q5 - @)
r

(with & the Pauli vector), which describes the dynamics of a chargedz%pinr-ticle with
anomalous gyromagnetic ratio 4 in the field of a dyon. When without a monopole,=d),
equations (1) and (2) reduce to the Hamiltonian of a free patrticle.

As is well known, there are two conserved vectors in a hydrogen atom, i.e. the angular
momentumé = 7 x p and the Pauli-Runge—-Lenz (PRL) veclmrboth of them satisfying
¢-b=0and f, Z] = [h, 5] =0, whereh = g — * is the Hamiltonian of a hydrogen atom.
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If there is a monopole, it is natural to extefidndb to become monopole-dependénandR

(see equations (3) and (5)), ahdo monopole-dependent Hamiltoni&h (see equation (11))
commuting withL andR. However, inthis case-R # 0, later one can see tHatR is related to

the monopole charge. On the other hand, the problem-solving hydrogeri/atom E¢) can

be transformed into solving a four-dimensional harmonic oscillator with constraimt= 0,

which may be traced back to the early days of quantum mechanics [10-12] and later discussed
by many authors in [13—-23]. Now a question is put forward: can we transform the monopole-
dependent three-dimensional Coulomb problem to a four-dimensional harmonic oscillator with
the extended constraiht- R # 0? To our knowledge, this problem has not been discussed in
the literature. The purpose of this paper is to establish the monopole-hydrogen atom system
and connect it to a four-dimensional harmonic oscillator with consttainR = gux. In
addition, the shift operators for a spherical harmonic function [23] are extended to include
monopoles in this paper. The extended ones then shift the Wu—Yang monopole harmonics
[24].

This paper is organized as follows. In section 2, we construct the Hamiltonian of the
monopole-hydrogen atol (see equation (11)) from the point of view 80 (4) dynamical
symmetry for bound motions. The two corresponding Pauli relations are found and the energy
spectrumis also given. Insection 3, the generators of thel) algebra are realized by bosonic
operators, after substituting them into the Pauli relations, the Hamiltonian systsnthen
connected to a four-dimensional harmonic oscillator with a monopole-dependent constraint.
In the last section, as a supplement, the monopole harmonics are obtained by the operator
method.

2. Conserved vectors and energy spectrum

The orbital angular momentum operator associated witlittle monopole is introduced by
[24]
N r >
L=rxmx—g- T=p—ZeA 3
r
whereA is the vector-potential of a Dirac monopole with strengtlyy x A = ¢ for either
A, or A, in the regioru andb as defined in [24] and

q=Zeg = % x integet (4)

It is easy to observe from (3) thhtreduces to the usual orbital angular momentug 0.
Motivated by the form of the PRL vector for the usual hydrogen atom, we introduce the
extended one

R=1@ xL—-Lxm)— f(r)r (5)

where f(r) is a real function of-, and is to be determined later by requiring thaandR
generate a dynamical grou (4).
Noting that (in units = 1)

[LO“Lﬁ] = iEaﬁVLV [La,ﬂﬁ] = iEaﬁijV a, ,3,7/ =X,Y¥,Z (6)
H . r i
[La 7] = i€apyry [7a. 7] = 'faﬁyqr_g [7as 7] = —idap
we obtain
2
RxR=-i [ﬁz + q_2 = 3f(r) - rf/(r)} L +ig [f/(r) + —f(r)] r (7
r r

wheref'(r) = & £(r).
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Let
, (r)

[+ fr =0 (8)

so that
c , 2c

foy=— 3f)+rfn="— ©)
herec is an arbitrary constant. Therefore, (7) becomes

R xR =-2inHL (20)
with

=2 1 2
H=" 4+ _X (11)

where . is the reduced mass of the hydrogen atom ang Ze?. (Here we have chosen
¢ = uk such thatd reduces to the Hamiltonian of the usual hydrogen atom wher0. By
the way, if one selects = ¢ instead, from equations (7)—(10) the Hamiltoniggshown in
(1) can be derived.)

The direct calculation shows

[H,L]=0 [H,R] =0. (12)
It indicates that in the monopole-hydrogen atom system shown by (11), there also exist two
conserved vectors, just like the usual Coulomb problem. The role playBd®the same as
the usual PRL vectdrs in a hydrogen atom, hence we cRlithe monopole-PRL vector.
For the bound states @&f, after replacing it byt (E < 0), we have
L-R=R.L=gux (13)
and
R? — (uk)? = 2uH(L? — g%+ 1). (14)

| -1
B= m_ER (15)

equations (13) and (14) recast to

2
L-B:B-L:q,/—% (16)

2, R2 s uK?
L°+B°+1=¢ Tk a7)
Clearly, equations (16) and (17) are the two corresponding Pauli relations for the Hamiltonian
H, since whery = 0, they will be reduced to the usual ones [25], i.e. (16) and (17) are
degenerated.
From equations (6), (10) and (15), it follows t5i© (4) algebra spanned dy(L,, Ly, L;)
andB(B,, By, B;), i.e.

[La’ Lﬁ] = iEaﬁVLy [La, Bﬁ] = iEaﬁVBy [Bou Bﬁ] = ifaﬂyLy. (18)
Now introducing
N:%(L+B) M :%(L—B) (19)

By rescaling

and
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2

2 1 2
NZ=M2+g -2 =2 g+ /2] -1 20
W% Ta|\? 2E (20)

[Na, Mﬁ] =0 [Na, Nﬂ] = iéaﬁyNy [Ma, Mﬁ] = ieaﬂyMy. (21)

one gets

and

It means thafN, M are two independent angular momentums. i@t + 1) andm(m + 1)
denote eigenvalues df2 andM?, respectively. On the basis of (20) the energy spectrum is
given by

2
KK 1 143
En:—Tm n:0,§,1,§, (22)
or
E, — 1 1 —0113 (23)
" amriegr "TOELE

Obviously if without a monopoleE, (= E,,) will reduce to the energy of the usual hydrogen
atom.

3. Connection with a four-dimensional harmonic oscillator

Without a monopole, extensive discussions about the transformation from the three-
dimensional Coulomb problem to a four-dimensional harmonic oscillator with a constraint
have been made. The typical example is the Kustaanheimo-Stiefel (KS) transformation [13—
23]. In fact, the constraint condition can be shown to be equivalent to the fact that the angular
momentum vector and the PRL vector are orthogonal to each other [19-23]. Following the spirit
of [19-22], we shall establish the connection between the monopole-hydrogen atom system
and a four-dimensional harmonic oscillator directly by introducing the bosonic realizations
of L andB and using two basic Pauli relations (16) and (17) satisfied by them, i.e. without
making use of the KS transformation.

To specify the vectoré andB given by (15), we take the following bilinear bosonic
realizations

L;=i(aoja+b"o;b) B; = 3(a*ojo,b* —doyo;b) j=x,5,2 (24)
with
a= (al) b= <a3> a’ = (a; ay) a=(arap) etc (25)

whereo;(j = x,y,z) are Pauli matricesy; anda;. (j = 1,2, 3,4 are annihilation and
creation bosonic operators. By substituting (24) into equations (16) and (17), equation (16)
yields

+ + + + + _+ + _+ : I’LKZ
(aja1 + ayap — azaz — azas)(aja, + aras — a,a; — azaz) = idq ~2F (26)
and (17) leads to

2
+ + + + N2 + + + o+ 2 2 K
(aja1 +azaz — azaz — azas)” — (aja, +aias — aza; — azaz)” =4 (q — E) . (27)
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(Note that equations (26) and (27), as well as some similar relations in this paper are understood
to be acted on by a wavefunctignof the system.) On account of the fact that the two factors
in the left-hand side of (26) commute to each other, then (26) and (27) give

aIal + azaz — agag — a:{a4 ==+2q (28)

. 2
aja, +ajas — ayaz — azaz = Fi2 —SF (29)

With the help of the standard combinations

and

1 )
Qi =\go@ra)  Pi=-io@—ap G0
wherew = /—E /2 > 0, (29) can be recast to
1 1 1 1 . K2
— PPy — — — —PP3+ — = =i - 31
2, [1be 2Q1Q4 o F2hs 2Q2Q3 = (31)

Motivated by [23], the following transformatiop;, Q; : j = 1,2,3,4} — (P}, Q) ! j =
17 21 37 4} ‘ .

P = %Z(P{HP‘{) Pa= %(Pl’—iP‘{)
01 = %Z(Qi—iQi;) 04 = %(Q&HQZ)
P, = %(Pz/+iP3/) P3=i72(P2/—iPé)
0, = %(Q;—iQa 0s = %(Q’ZHQ;,)

allows us to obtain

1t 2 1 ,& . 2ukc?
=y PPz =t - . 32
20 27 Zuw;Q, A (32)

Denotew’ = +iw, (32) can be rewritten in the form

1 . /2 1 2 : 2 ’ 2/"“(2
2u 2 Pt gt Y 0 = el (33)
J= J=

The Schédinger equation corresponding to (33) reads

Hoypy =€y (34)

where we have denoted the left- and the right-hand sides of (33jpande, respectively,
which are the pseudo-Hamiltonian of a four-dimensional harmonic oscillator and pseudo-
energy eigenvalue, respectively. Obviously, the eigenvalue is given by

€ =y +tny+nz+ns+2he (35)
withn; =0,1, ..., for j = 1to 4, so that one easily obtains
2
1
=1 (36)

2 n?
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where

n/=%(nl+n2+n3+n4+2):1,%,2,.... (37)

Similarly, it can be shown that the constraint (28) requires [20]
nytny=nzg+ns+2g (38)

which is a monopole-dependent constraint condition. If, without a monopole, k€0, it
will reduce to the usual one, i.e.- R = 0, whose physical meaning is only that the angular
momentum vector and the PRL vector are orthogonal to each other.

Sincey can be either positive or negative, after selecting one solutitn, = nz+ns+2q,
from equations (36) and (37) we have

2
S _ PP
En=—7 2n+1—q)? n=(1+n/2=0,35173,... (39)
or
E. = MKZ l _ N 2_0113 (40)
mT T2 2m+1+q)2 m=(n3+ng)/2=0313, ...

which coincide with (22) and (23). Consequently, the monopole-hydrogen atom system (11)
can be connected to a four-dimensional harmonic oscillator (33) with a monopole-dependent
constraint condition shown by (28).

4. Monopole harmonics and shift operator of 2

In this section, let us return to the angular part of wavefunctiond afiven in (11). In this
case the usual spherical harmonits, (6, ¢) should be replaced by the monopole harmonics
Y, .m0, @), which are simultaneous eigensections 6faind L. with eigenvaluesg(/ + 1) and

m,

L2Yq,l,m = l(l + 1)Yq,l,m Lqu,l.m = qu,l,m (41)

wherel = |¢q|, 19| + 1, |q| + 2, ..., and for each valué m ranges from-/ to + in integer
steps of increment [24]. Explicit expressions 11, ,, = ©Og.1,m(0)P, . (¢) Were given in
[24] by dealing with some partial differential equations. For instance, in reRjofsee [24],
the vector potentiah is defined in two different regiong, and R;), @, ,,(¢) = €m*?,
which is obtained from

.0
LZ®q,m(¢) = (_I% - q)q)q,n1(¢) = mq)q,m(¢) (42)
at the same timeg), ; ,,(9) is obtained through solving

1
[l(l + 1) - q2]®q,l,m(0) = |:_ _9(m + q C089)21| ®q,l,m(0)~ (43)

—— —sing— +
sing 96 90 sin?

Now, we want to rederive monopole harmonics by the operator method, without dealing
with the second-order partial differential equations as shown by (43). What we have to do is
to find monopole-dependent shift operatord éfand L.. As usual, the angular momentum
operator satisfies

[L., Li] ==+Ls [L+,L_]=2L, (44)

thus,L, = L, +iL, are shift operators df, they shift the quantum number as follows:

LiYyim = VIA+D) —m(m £ D]Y, et (45)



The monopole-hydrogen atom system 951

Shift operators fok 2 have been discussed in [23] that can change the quantum niinwigh
the shift operators the usual spherical harmonics are obtained. Following in the same spirit,
we construct shift operators bf in the presence of a monopole.

In the derivation of these shift operators, the scalar and vector properties of operators play
an important role. By definitionk is a scalar operator with respectltaf

[L,,K]=0 a=x,y,z (46)
andV is a vector operator with respectltoif

[Le, Vg] = i€ap, Vy. (47)
From (47) it follows that

[L2,V] =2V +2iV x L. (48)
It can be verified that

[Lo, (V x L)g] = li€qp, (V x L), (49)
which means tha x L is also a vector operator to. Replacingv by V x L in (48) one gets

[L2,VxL]=2V xL+2i(VxL)xL. (50)
With

(VxL)yxL==VL2+i(VxL)+(V-L)L (51)
we then have

[L2,V x L] = 2i(=VL2+ (V- L)L). (52)
SinceV - L is a scalar operator with respectltoso that

[L2,V-L]=0. (53)

Now consider the operators

1
U* = &i(V x L)+ VK* — (V- L)L (54)

Kiz (L2+z_ji:|:% (55)

which are scalar operators. (We have plaégtl to the right ofV andL to allowed them
to operate directly on eigenfunctidfy ; ,,. This simplifies the calculations.) Hentk" are
vector operators and

with

[La, (UH)g] = i€ap, (UD),. (56)
Due to equations (48),(50) and (53), one obtains

[L2, U%] = +2U%K=. (57)
Let D.. denote the-component ofJ=, it is easy to get

[L2, D.] = +2D.K* [L,, Di]=0. (58)
Obviously,D. are the wanted shift operators that only change the quantum nuabtriows

DiYyim — Yyieim. (59)

Consequently, the operatof3. together with L. can generate all arbitrary monopole
harmonics from a starting one, e.g.

Yq,l.m - ClmL-TDqu,O,O (60)



952 J-L Chen et al

whereC,,, are the normalized constants.
We now give explicit expressions for the shift operatd@s discussed above. Let
V = r~1r, then

V.L=L.V=—4. (61)
With

V, = cosd i(VxL), = sin@% (62)
one finally obtains

Dy = :tsine% +CcoOSHK ™ +qu% (63)
whereL, = —i% — g acts in regionk,, wheread., = —iai +g¢ inregionR,. We emphasize

that D are the monopole-dependent extension of the shift operators given in [23].
As special cases of equation (58).. annihilateY, ; 1;, we have

D—Yq,l,l = D—®q,l,l(9)q)q,m:1(¢) =0. (64)
Due to
K Ygim=+3£ DY um LYy =1Y,, (65)
from equations (63) and (64) we have
. 0
D_©,,,06) = (— Sing— +1cosy + q) ©,100)=0 (66)
hence,
1 — cosp \*/2
©,1.(0) = Cy(sing) | =— 67
¢.1,1(0) 1 ( ) <1+COS9) (67)

The results coincide with those obtained from (43). By another manner, an arbitrary monopole
harmonics can also be obtained through

Yq,l,m = Clle__m Yq,l,l' (68)

Consequently, monopole harmonics are obtained from the operator method. p\Vhed
they reduce naturally to the usual spherical harmonics.

Eventually, we would like to briefly state the radial part of the Hamiltorfiirsince (see
[24])

7%= —rizaa—r <r2;—r> + riz[L2 - 43 (69)
and we take the coordinate-space wavefunctions

Yagrtm(T) = Ry 1(r) Yy 1m0, @) (70)
from equation (11) it follows

[— 2;2 % (rzaa_r) * 1(21/;? - ;] Ryt(r) = xRy (). (71)
Evidently, the form of the radial wave equation (71) is the same as that of the usual hydrogen
atom, except for the different valuesiot |q|, |g| + 1, |g| + 2, .... The solution of (71) is

Rysi(r) = Cour'e™ By (l +1—1;20+2, 2 —ZMEAr) (72)
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whereC; ; are normalized constantsh («; 8; z) is a confluent hypergeometric function, and

b= _MTKZ;le (73)
Further analyses show that the principle quantum number

A=lgl+1lql+2]q]+3, ... (74)
and

I=lql,lgl+1,....0 =1 (75)

The smallest value df is |¢| + 1, then we must be aware that in the energy spectrum given by
(22) or (39), the value of takes

n=_(ql+q)/2,(ql+q+1/2,(ql+q+2)/2,.... (76)

In summary, we have established the Hamiltonian of a hydrogen atom with a monopole,
conserved quantitiegsandR generate af O (4) dynamical symmetry of the system. Moreover,
the system can be connected to a four-dimensional harmonic oscillator with a monopole-
dependent constraint condition. In addition, due to the shift operatb? ofne monopole
harmonics can be obtained completely by the operator method.
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